
Attention Maps
(VOT trained on RGBD and pre-trained with a MultiMAE)

▪ Action taken: left, Injected actions: fwd, left, right

▪ Embed fwd causes the attention to focus on the center

▪ Embed left and right move attention towards regions of the 

image that would be consistent across time steps t,t+1 in 

case of rotation

PointNav Paths

► VOT helps agents reach 

the goal 1) - 3)

▪ when dropping modalities, 

agent still makes progress 

towards the goal  4) 5)

▪ however, those agents get 

stuck in narrow passages

► don’t reach the goal in T

time steps

Solution: Visual Odometry Vision Transformers (VOT)

▪ Vision Transformers are flexible w.r.t. input modalities even during test 

time due to the independence of their weights on the sequence length [3]

▪ Multi-modal pre-training (e.g. MultiMAE [4])

▪ Attention mechanism to identify importance of regions and modalities

▪ Pass action prior as separate token

Visual Odometry for Indoor Navigation [1,2]

▪ Estimate transformation between agent’s coordinate systems

▪ Predict transformation parameters from observations 𝒐𝑡, 𝒐𝑡+1using 𝑓𝜙

▪ When 𝑓𝜙 is ConvNet, input size is fixed

► Dropping any modality leads to catastrophic failure!

Problem

▪ GPS+compass are not reliable for localization in indoor 

environments [1]

▪ Visual Odometry (VO) is a sufficient alternative, but models can be 

dominated by a single modality in a multi-modal (RGBD) setting

▪ Erroneous sensors causes catastrophic failure of VO models

Modality-invariant Visual Odometry for 

Indoor Navigation
Marius Memmel, Amir Zamir

Code, paper, visuals

Takeaways

► VOT can function when modalities are missing

► VOT implicitly learns some invariance to modalities

► Action prior primes model to attend relevant regions

► Pre-training reduces data requirements to 25%

PointNav Results

▪ dropping modalities (drp) 

lets ConvNet approaches 

converge to a blind VO 

model

▪ VOT maintains sufficient 

localization capabilities, 

c.f., SoftSPL (SSPL) [1]
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Limitations & Future Work

► Full robustness may require explicit measures (randomly 

drop modalities during training)

► Dropping modalities causes inconsistencies in the 

localization (fine-tune the policy to adapt)

► Only two modalities (extend by semantic segmentation)


