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Problem formulation Approach

Black-box Optimization Objective (with KL constraint): Assumption: Not all policy parameters contribute equally to the return!

1. Diagonalize covariance matrix X, via SVD and continue work in rotated space
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linear correlation: Pearson Correlation Coefficient (PCC)
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3. Prioritized Exploration: decrease variance of ineffective parameters by scaling factor
0 < X\ < 1 which increases exploration of effective parameters

The sample complexity of this approach scales poorly with 4. Guided Dimensionality Reduction: update partial covariance matrix of effective pa-
the dimensionality of 0, particularly when using a full covari- rameters S;. with CREPS and substitute result back into original covariance matrix to
ance matrix X;. Furthermore, samples are extremely costly obtain Sj.

in a Robot Learning context.

Implementation Details

Guided Dimensionality Reduction (GDR) and Prioritized Exploration (PE) on a full covariance update for a generic policy search algorithm (UPDATE).
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Experimental Evaluation
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Conclusions

- Exploiting parameter effectiveness leads to faster learning

- More updates with fewer samples are beneficial

» Structured policies can reduce task complexity in Robot Learning
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