Dimensionality Reduction and Prioritized Exploration for Policy Search

Only update and explore effective policy parameters!

Marius Memmel¹, Puze Liu¹, Davide Tateo¹ & Jan Peters¹ ¹Intelligent Autonomous Systems, TU Darmstadt, Germany

Problem formulation

Black-box Optimization Objective (with KL constraint):

$$\mathcal{J}(p) = \mathop{\mathbb{E}}_{\boldsymbol{\theta} \sim p} \left[J(\pi_{\theta}) \right], \quad p_{k}(\boldsymbol{\theta}) = \mathcal{N}\left(\cdot | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$$
$$J(\pi_{\theta}) = \mathop{\mathbb{E}}_{(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}) \sim \pi_{\theta}, \mathcal{P}, \iota} \left[\sum_{t=0}^{T} \gamma^{t} r(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}) \right]$$

The sample complexity of this approach scales poorly with the dimensionality of θ , particularly when using a full covariance matrix Σ_k . Furthermore, samples are extremely costly in a Robot Learning context.

Implementation Details

We acknowledge also the support provided by China Scholarship Council (No. 201908080039).

Experimental Evaluation

TECHNISCHE UNIVERSITÄT DARMSTADT