
STRAP: ROBOT SUB-TRAJECTORY RETRIEVAL FOR
AUGMENTED POLICY LEARNING

Marius Memmel∗,1, Jacob Berg∗,1, Bingqing Chen2, Abhishek Gupta1†, Jonathan Francis2,3,†

1Paul G. Allen School of Computer Science & Engineering, University of Washington
2Robot Learning Lab, Bosch Center for Artificial Intelligence
3Robotics Institute, Carnegie Mellon University
{memmelma,jacob33,abhgupta}@cs.washington.edu,
{bingqing.chen,jon.francis}@us.bosch.com

ABSTRACT

Robot learning is witnessing a significant increase in the size, diversity, and com-
plexity of pre-collected datasets, mirroring trends in domains such as natural lan-
guage processing and computer vision. Many robot learning methods treat such
datasets as multi-task expert data and learn a multi-task, generalist policy by train-
ing broadly across them. Notably, while these generalist policies can improve
the average performance across many tasks, the performance of generalist poli-
cies on any one task is often suboptimal due to negative transfer between parti-
tions of the data, compared to task-specific specialist policies. In this work, we
argue for the paradigm of training policies during deployment given the scenar-
ios they encounter: rather than deploying pre-trained policies to unseen prob-
lems in a zero-shot manner, we non-parametrically retrieve and train models di-
rectly on relevant data at test time. Furthermore, we show that many robotics
tasks share considerable amounts of low-level behaviors and that retrieval at the
“sub”-trajectory granularity enables significantly improved data utilization, gen-
eralization, and robustness in adapting policies to novel problems. In contrast,
existing full-trajectory retrieval methods tend to underutilize the data and miss
out on shared cross-task content. This work proposes STRAP, a technique for
leveraging pre-trained vision foundation models and dynamic time warping to re-
trieve sub-sequences of trajectories from large training corpora in a robust fash-
ion. STRAP outperforms both prior retrieval algorithms and multi-task learning
methods in simulated and real experiments, showing the ability to scale to much
larger offline datasets in the real world as well as the ability to learn robust con-
trol policies with just a handful of real-world demonstrations. Project videos at
https://sites.google.com/view/strappaper/home
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Figure 1: STRAP: Sub-trajectory retrieval for training
robust policies during deployment.

Robot learning techniques have shown the abil-
ity to shift the process of designing robot con-
trollers from a large manual or model-based
process to a data-driven one (Francis et al.,
2022; Hu et al., 2023). A particularly promis-
ing paradigm is that of end-to-end imitation
learning with large neural models (Chi et al.,
2023; Haldar et al., 2024), which has shown
considerable success with the proliferation of
powerful neural architectures such as diffusion
models (Chi et al., 2023; Wang et al., 2024) or
transformers (Haldar et al., 2024; Zhao et al.,
2023), as well as the availability of large, di-
verse robotics datasets (Khazatsky et al., 2024;
Collaboration et al., 2023). While imitation learning can be effective for performing particular tasks,
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with targeted in-domain data collection, this process can be expensive and time-consuming in terms
of human effort. This becomes a challenge as we deploy robots into dynamic environments such as
homes and offices, where new tasks and environments are commonplace and constant data collection
is impractical.

Multi-task policy learning is often used in this situation, where data across multiple tasks is used to
train a large task- or instruction-conditioned model that has the potential to generalize to new prob-
lems. While multi-task learning has seen successes in certain settings (Reed et al., 2022; Brohan
et al., 2023), the performance of a multi-task, generalist policy is often lower than task-specific, spe-
cialist policies. This can be attributed to the model suffering from negative transfer and sacrificing
per-task performance to improve the average performance across tasks. This challenge is exacer-
bated in unseen tasks or domains since zero-shot generalization is challenging and collecting large
amounts of in-domain finetuning data can be expensive. In this work, we consider ways to better use
pre-collected datasets and to enable few-shot finetuning of imitation learning models for new tasks.

In particular, we build on the paradigm of non-parametric data retrieval, where a small amount
of in-domain data collected at test-time is used to retrieve a subset of particularly “relevant” data
from the training corpus. This retrieved data can then be used for robust and performant model
training and finetuning on new tasks. In this sense, the retrieved data can guide learned models
towards desired behavior during test-time deployments; however, the question becomes: How do we
sub-select which data to retrieve from a large, pre-existing corpus?

Several prior techniques have studied the problem of non-parametric retrieval, from the perspective
of learning latent embeddings that encode states (Du et al., 2023), skills (Nasiriany et al., 2022),
optical flow (Lin et al., 2024), and learned affordances (Kuang et al.). Most techniques are challeng-
ing to apply out of the box for two primary reasons. Firstly, they require training domain-specific
encoders to embed states, skills, or affordances: this makes it challenging to apply to demonstra-
tions collected in the open world, where visual appearance can show wide variations. Secondly,
they often retrieve entire trajectories, limiting the policies’ ability to use data from other tasks that
may share common components with the desired test-time behavior. These challenges limit both
the broad applicability of these retrieval methods and the amount of cross-task data sharing. How
can we design easy-to-use off-the-shelf retrieval methods that maximally utilize the training data for
test-time adaptation?

The key insight in this work is that retrieval methods do not need to measure the similarity between
entire trajectories (or individual states), but rather between sub-trajectories of the desired behavior
at test-time and corresponding sub-trajectories of the training data. Notably, these sub-trajectories
do not need to come from tasks that are similar in entirety to the desired test-time tasks. Instead,
sub-components of many related tasks can be shared to enable robust, test-time policy training. For
example, as shown in Fig. 1, for the multi-stage task of “pick up the mug, put it in the drawer,
and close it”, both “pick up the mug, put in on top of the drawer” and “close the bottom drawer,
open the top drawer” contain sub-tasks that when retrieved provide useful training data. Our pro-
posed method, Sub-sequence Trajectory Retrieval for Augmented Policy Learning (STRAP), uses a
small amount of in-domain trajectories collected at test-time to retrieve and train on these relevant
sub-trajectories across a large multi-task training corpus. The resulting policies show considerable
improvements in robustness and generalization over previous retrieval methods, zero-shot multi-task
policies, or policies that are trained purely on test-time in-domain data.

We show how STRAP can be used with minimal effort across training and evaluation domains with
non-trivial visual differences. Our method first compares sub-trajectory similarity using features
from off-the-shelf foundation models, e.g., DINOv2 (Oquab et al.); these features capture strong
notions of “object-ness”, discarding spurious visual differences such as lighting, texture, and local
changes in object appearance. Secondly, our method leverages time-invariant alignment techniques,
such as dynamic time warping (Giorgino, 2009), to compute the similarity between sub-trajectories
of different lengths, removing requirements for retrieved trajectories to have a similar length and in-
creasing the applicability of STRAP across tasks and domains. Lastly, we show how STRAP can be
applied to arbitrary test corpora, with sub-trajectories being automatically extracted by our frame-
work, thereby removing the requirement for manual segmentation of relevant sub-trajectories from
the training corpus. We demonstrate how STRAP can be used out of the box to augment any few-
shot imitation learning algorithm, providing significant gains in generalization at test-time, while
avoiding expensive, test-time in-domain data collection. We instantiate STRAP with transformer-
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based imitation learning policies and show the benefits of few-shot sub-trajectory retrieval on the
LIBERO (Liu et al., 2024) benchmark in simulation and real-world imitation learning problems.

2 RELATED WORK

Retrieval for Behavior Replay: A considerable body of work has explored retrieval-based ap-
proaches for robotic manipulation, where the retrieval of relevant past demonstrations aids in re-
playing past experiences. The choices of embedding space hereby range from off-the-shelf mod-
els (Di Palo & Johns, 2024; Malato et al., 2024) like DINO (Caron et al., 2021), training encoders
on the offline dataset (Pari et al., 2022) to abstract representation like object shapes (Sheikh et al.).
Some works do not directly replay actions but add a layer of abstraction following sub-goals (Zhang
et al., 2024), affordances (Kuang et al.) or keypoints (Papagiannis et al.). A key assumption of
these methods is that the offline data either exactly resembles expert demonstrations collected in the
test environment or that intermediate representations can bridge the gap. These drawbacks limit the
usage of large multi-task datasets collected in various domains.

Retrieval for Few-shot Imitation Learning: Retrieval for policy learning tries to mitigate these
issues by learning policies from the retrieved data. While retrieval has shown to benefit policy
learning from sub-optimal single-task data (Yin & Abbeel, 2024), most work focuses on retrieving
from large multi-task datasets like DROID (Khazatsky et al., 2024) or OpenX (Collaboration et al.,
2023) containing expert demonstrations. BehaviorRetrieval (BR) (Du et al., 2023) and FlowRe-
trieval (FR) (Lin et al., 2024) train an encoder-decoder model on state-action and optical flow
respectively. Related to our work, SAILOR (Nasiriany et al., 2022) imposes skill constraints on
the embedding space, clustering similar skills together to later retrieve those. A significant down-
side of training custom representations is that these methods do not scale well to the increasing size
of available offline datasets and are unable to deal with significant visual and semantic differences.
Moreover, techniques like BehaviorRetrieval and FlowRetrieval retrieve individual states, rather than
sub-trajectories like our work, where sub-trajectory retrieval enables maximal data sharing between
seemingly different tasks while capturing temporal information.

Learning from Sub-trajectories: Several works propose to decompose demonstrations into
reusable sub-trajectories, e.g., based on end-effector-centric or full proprioceptive state-action tran-
sitions (Li et al., 2020; Belkhale et al., 2024; Shankar et al., 2022; Myers et al., 2024; Francis et al.,
2022). Belkhale et al. (2024) propose to decompose demonstrations into end-effector-centric sub-
tasks, e.g., ”move forward” or ”rotate left”. The authors show that by decomposing and re-labeling
the language instructions into a shared vocabulary, knowledge from multi-task datasets can be better
shared when training multi-task policies. Myers et al. (2024) leverage VLMs to decompose demon-
strations into sub-trajectories to better learn to imitate them. To our knowledge, we propose the
first robot sub-trajectory retrieval mechanism, for partitioning large offline robotics datasets and for
enabling cross-task positive transfer during policy learning.

3 PRELIMINARIES

3.1 DYNAMIC TIME WARPING

To match sequences of potentially variable length during retrieval, we build on an algorithm called
dynamic time warping (DTW) (Müller, 2021). DTW methods compute the similarity between two
time series that may vary in time or speed, e.g., different video or audio sequences. This algorithm
aligns the varying length sequences by warping the time axis of the series using a set of step sizes to
minimize the distance between corresponding points while obeying boundary conditions.

DTW algorithms are given two sequences, X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}, where
m ̸= n, and a corresponding cost matrix C(xi, yj) that assigns the cost of assigning element xi of
sequence X to correspond with element yj of sequence Y . The goal of DTW is to find a mapping
between X and Y that minimizes the total cumulative distance between the assigned elements of
both sequences while obeying boundary and continuity conditions. Dynamic time warping methods
solve this problem efficiently using dynamic programming methods.
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"Put the white pen in the red plastic cup"

"Push the button on the toaster"

"Pick up the marker and put it in the mug"

           

Figure 2: Overview of STRAP: 1) demonstrations Dtarget and offline datasets Dprior are encoded
into a shared embedding space using a vision foundation model, 2) automatic slicing generates sub-
trajectories which 3) S-DTW matches to corresponding sub-trajectories in Dprior creating Dretrieval,
4) training a policy on the union of Dretrieval and Dtarget results in better performance and robustness.

A cumulative distance matrix D is computed via dynamic programming as follows: D(0, 0) =
C(0, 0), D(n, 1) =

∑n
k=1 C(k, 1) for n ∈ [1 : N ] and D(1,m) =

∑m
k=1 C(1, k) for m ∈ [1 : M ].

Then the following dynamic programming calculation is performed:

D(i, j) = C(xi, yj) + min{D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)}, (1)

where C(xi, yj) is the distance between points xi and yj . We assume this cost matrix is pre-
provided, and we describe how we compute this from raw camera images in Sec. 4.3. The optimal
alignment between the sequences is found by backtracking from D(n,m) to D(0, 0), which gives
the minimal alignment obeying the boundary condition. This guarantees that the start is matched to
the start and the end is matched to the end or that the pairs (x0, y0) and (xn, ym) are the start and
end of the path. This optimal paring path consists of the best possible alignment between X and Y
such that the cumulative cost between all matched pairs is minimized. DTW, as described, is widely
used in time-series analysis, speech recognition, and other domains where temporal variations exist
between sequences. In the context of our retrieval problem, DTW is used to go beyond retrieving
exactly matched sequences to matching variable length subsequences, as we describe below.

Subsequence dynamic time warping (S-DTW) is an extension of the DTW algorithm for sce-
narios where a shorter query sequence must be matched to a portion of a longer reference se-
quence. Given a query sequence X = {x1, x2, . . . , xn} and a much longer reference sequence
Y = {y1, y2, . . . , ym}, the goal of S-DTW is to find a subsequence of Y (of a potentially different
length from X), denoted Yi:j where i ≤ j, that has the minimal DTW distance to X .

The cumulative cost matrix D for S-DTW is computed similarly to the traditional DTW described
above, but with the distinction that it allows alignment to start and end at any point in R. D
is initialized as D(0, 0) = C(0, , D(n, 1) =

∑n
k=1 C(k, 1) for n ∈ [1 : N ] and D(1,m) =

C(1,m) for m ∈ [1 : M ] and then completed using dynamic programming following Eq. (1).

This ensures that the query can match any sub-sequence of the reference. Once the cumulative cost
matrix is computed, the optimal alignment is found by backtracking from the minimal value in the
last row of the matrix, i.e., min(D(n, j)) for j ∈ {1, . . . ,m}. This gives the subsequence of Y
that best aligns with X , obeying only temporality while relaxing the boundary condition. As we
will show, using S-DTW for data retrieval enables the maximal retrieval of data across tasks in a
retrieval-augmented policy training setting, as described in Sec. 4.3.

4 STRAP: SUB-SEQUENCE ROBOT TRAJECTORY RETRIEVAL FOR
AUGMENTED POLICY TRAINING

In NLP, retrieval is a well-established paradigm for retrieving samples relevant to test-time scenarios
using non-parametric similarity matching. These retrieval methods (Huang & Huang, 2024) can
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retrieve high-quality, relevant data from the training corpus and use this to target the model for the
particular test-time scenario with in-context learning. Informally, this transitions the model from
being a jack-of-all-trades to a master-of-one. How can we adapt such a paradigm to policy learning
for robotics? Prior retrieval methods (Lin et al., 2024; Du et al., 2023; Kuang et al.; Nasiriany et al.,
2022) often require domain-specific training, or underutilize the training data.

To address these challenges, we present STRAP, a scalable retrieval method that can target models to
particular test-time distributions by finding semantically similar sub-trajectories through the use of
subsequence dynamic time warping with metric spaces defined by features from off-the-shelf vision
foundation models. Doing so makes STRAP both visually robust and able to maximally utilize
relevant portions of the training data. Our key insights are as follows:

1. Vision foundation models offer powerful out-of-the-box representations for trajectory re-
trieval. They sufficiently encode scene semantics and offer visual robustness in contrast to
brittle in-domain feature extractors from prior work.

2. Sub-trajectory retrieval can enable maximal re-use of prior data while capturing temporal
information about tasks and dynamics.

3. Performing retrieval via subsequence dynamic time warping can find optimal sub-trajectory
matches in offline datasets that are agnostic to segment length task horizon or fluctuations
in demonstration frequency.

4.1 PROBLEM SETTING: RETRIEVAL-AUGMENTED POLICY LEARNING

We consider a few-shot learning setting where we’re given a target dataset Dtarget =
{(si0, ai0, si1, ai1, . . . , siHi

, aiHi
, li)}Ni=1 containing expert trajectories of states s (e.g., observations

like camera views o and propriception x), actions a (such as robot controls), and task-specifying
language instructions l. This target dataset is collected in the test environment and task, but there
is only a small set of N trajectories, which limits generalization for models trained purely on such
a small dataset. Since Dtarget is often insufficient to solve the task alone, we posit that generaliza-
tion can be accomplished by non-parametrically retrieving data from an offline dataset Dprior. This
offline dataset Dprior = {(sj0, a

j
0, s

j
1, a

j
1, . . . , s

j
Hj

, ajHj
, lj)}Mj=1 can contain data from different envi-

ronments, scenes, levels of expertise, tasks, or embodiments. Notably, the set of tasks in the offline
dataset do not need to overlap with the set of tasks in the target dataset. We assume that the offline
dataset shares matching embodiment with the target dataset and consists of expert-level trajectories,
but may consist of a diversity of scenes and tasks that vary widely from the target dataset Dtarget.

Given Dprior and Dtarget, the goal is to learn a language-conditioned policy πθ(a|s, l) that can predict
optimal actions a in the target environment when prompted with the current state s and language
instruction l. Assuming we can obtain a measure of success (such as task completion), and a broad
set of initial conditions s0 ∼ ρtest(s0) in the test environment. The objective of policy learning is to
determine the policy parameters θ to maximize the expected success metric when evaluated on test
conditions, under the policy πθ and test-time environment dynamics. Since we are only provided
a limited corpus of data, Dtarget, in the target domain, these policy parameters cannot be learned
by simply performing maximum likelihood on Dtarget. Instead, we will present an approach where
a smaller, “relevant” subset of the offline dataset Dretrieval ⊆ Dprior is retrieved non-parametrically
and then mixed with the smaller in-domain dataset Dtarget to construct a larger, augmented training
dataset, i.e., Dtarget ∪ Dretrieval, which is most relevant to the desired test-time conditions ρtest(s0).
This can then be used for training policies via imitation learning, as we will describe in Sec. 4.5.
Doing so avoids an expensive generalist training procedure and rather focuses the learned model to
being a high-performing specialist in a particular setting of interest. The key questions becomes -
How can we define what subset of the offline dataset Dprior is relevant to construct Dretrieval?

To handle the unique nature of robotic data, e.g., multi-modal and temporally dependent, we design
STRAP for retrieval-augmented policy learning. Firstly, we need to define the unit of retrieval.
Rather than retrieving individual state-action pairs or entire trajectories, STRAP crucially retrieves
sub-trajectories. We also propose a method to automatically segment trajectories in Dtarget into such
sub-trajectories (Sec. 4.2). Secondly, we need to define a suitable distance metric for a pair of sub-
trajectories (Sec. 4.3). Then, we need a computationally efficient algorithm to retrieve relevant sub-
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"Put the black bowl in the bottom drawer of the cabinet and close it"

"Put the black bowl on top of the cabinet" "Close the bottom drawer of the cabinet and open the top drawer"

S-DTW Matching

Figure 3: Sub-trajectory matching: S-DTW matches the sub-trajectories of Dtarget (top) to the
relevant segments in Dprior. A feature of S-DTW is that the start and end of the trajectories do not
have to align, finding optimal matches for each pairing.

trajectories non-parametrically from the training set (Sec. 4.4). Finally, we put everything together
and train policies based on retrieved data (Sec. 4.5).

4.2 SUB-TRAJECTORIES FOR DATA RETRIEVAL

To make the best use of the training dataset, while capturing temporal task-specific dynamics, we
expand the notion of retrieval from being able to retrieve entire trajectories or single states to re-
trieving variable-length sub-trajectories. In doing so, retrieval can capture the temporal dynamics
of the task, while still being able to share data between seemingly different tasks with potentially
different task instruction labels. In particular, we define a sub-trajectory as a consecutive subset of
a trajectory tia:b ⊆ T i with the sub-trajectory tia:b = (sia, s

i
a+1, . . . , s

i
b) including timestep a to b

of the whole trajectory T i of length Hi. Most long-horizon problems observed in robotics datasets
(Liu et al., 2024; Khazatsky et al., 2024; Collaboration et al., 2023) naturally contain multiple such
sub-trajectories. For instance, the task shown in Eq. 3 can be decomposed into “put the bowl in the
drawer” and “close the drawer”. Note that we do not require these trajectories to explicitly have a
specific semantic meaning, but semantically meaningful sub-trajectories often coincide with those
most commonly encountered across tasks as we see in our experimental evaluation.

Given this definition of a sub-trajectory, our proposed retrieval technique only requires segmenting
the target demonstrations into sub-trajectories Ttarget = {ti1:a, tia:b, . . . , tiHi−pi:Hi

,∀T i ∈ Dtarget}
but not the much larger offline training dataset Dprior. Instead, appropriate sub-sequences will be
retrieved from this dataset using a DTW based retrieval algorithm (Sec. 4.4). This makes the pro-
posed methodology far more practical since Dprior is much larger than Dtarget. While this separation
into sub-trajectories can be done manually during data collection, we propose an automatic tech-
nique for sub-trajectory separation that yields promising empirical results. Building on techniques
proposed by Belkhale et al. (2024), we split the demonstrations into atomic chunks, i.e., lower-level
motions, before retrieving similar sub-trajectories with our matching procedure (Sec. 4.4). In partic-
ular, we propose a simple proprioception-based segmentation technique that optimizes for changes
in the robot’s end-effector motion indicating the transition between two chunks. For example, a
Pick&Place task can be split into picking and placing separated by a short pause when grasping the
object. Let xt be a vector describing the end-effector position at timestep t. We define ”transition
states” where the absolute velocity drops below a threshold: ∥ẋ∥ < ϵ 1. We empirically find that
this proprioception-driven segmentation can perform reasonable temporal segmentation of target
trajectories into sub-components. This procedure can certainly be improved further via techniques
in action recognition using vision-foundation models (Team et al., 2023), or information-theoretic
segmentation methods (Jiang et al., 2022).

4.3 FOUNDATION MODEL-DRIVEN RELEVANCE METRICS FOR RETRIEVAL

Given the definition and automatic segmentation of sub-trajectories, we must define a measure of
similarity that allows for the retrieval of appropriate relevant sub-trajectory data from Dprior, and
at the same time is robust to variations in visual appearance, distractors, and irrelevant spurious

1For trajectories involving “stop-motion”, this heuristic returns many short chunks as the end-effector idles,
waiting for the gripper to close. To ensure a minimum length, we merge neighboring chunks until all are ≥ 20.
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Algorithm 1 STRAP (Dtarget, Dprior, K, ϵ, F)

Require: demos Dtarget, offline dataset Dprior, vision foundation model F , # retrieved chunks K,
chunking threshold ϵ;

1: /* Pre-processing */
2: Ttarget ← SubTrajSegmentation(Dtarget, ϵ); ▷ Heuristic demo chunking
3: Eprior ← {{F(ot)|ot ∈ T}|T ∈ Dprior}; ▷ Embed Dprior
4: Etarget ← {{F(ot)|ot ∈ T}|T ∈ Ttarget}; ▷ Embed chunked Dtarget
5: /* Sub-trajectory Retrieval using S-DTW*/
6: for Starget ∈ Dtarget do
7: M← []; ▷ Initialize empty match storage
8: for Tprior ∈ Dprior do
9: D ← computeCostMatrix(Etarget, Eprior); ▷ Eq. (2)

10: Mi,j ← extractSubTrajectory(D,Tprior); ▷ Dynamic Programming
11: end for
12: end for
13: Dretrieval ← retrieveTopKMatches(M,K); ▷ Sec. 4.4
14: /* Policy Learning */
15: repeat
16: sample B ∼ Dtarget ∪ Dretrieval to update policy πθ with loss L(B; θ) ▷ Eq. (3)
17: until πθ converged; return πθ

features. While prior work has suggested objectives to train such similarity metrics through repre-
sentation learning (Du et al., 2023; Lin et al., 2024; Kuang et al.), these methods are often trained
purely in-domain, making them particularly sensitive to aforementioned variations. While using
more lossy similarity metrics based on optical flow (c.f. (Lin et al., 2024)) or language (Zha et al.,
2024) can help with this fragility, it often fails to capture the necessary task-specific or semantic
details. This suggests the need for a robust, domain-agnostic similarity metric that can easily be
applied out-of-the-box.

In this work, we will adopt the insight that vision(-language) foundation models (Oquab et al.; Rad-
ford et al., 2021) offer off-the-shelf solutions to this problem of measuring the semantic and visual
similarities between sub-trajectories, capturing object- and task-centric affordances, while being ro-
bust to low-level variations in scene appearance. Trained on web-scale real-world image(-text) data,
these models are typically robust to low-level perceptual variations, while providing semantically
rich representations that naturally capture a notion of object-ness and semantic correspondence. De-
noting a vision foundation model as F(·), we can compute the pairwise distance of two camera
views with an L2 norm2 in embedding space, i.e., ||F(oi) − F(oj)||2. While aggregation methods
such as temporal averaging could be used to go from embedding of a single image to that of a sub-
trajectory, they lose out on the actions and dynamics. We instead opt for a sub-trajectory matching
procedure based on the idea of DTW (Giorgino, 2009) and use the embeddings for finding maxi-
mally relevant sub-trajectories. Given two sub-trajectories, ti and tj , we compute a pairwise cost
matrix C ∈ R|ti|×|tj |, where its value is as computed by:

C(i, j) = ||F(oi)−F(oj)||2 (2)

4.4 EFFICIENT SUB-TRAJECTORY RETRIEVAL WITH SUBSEQUENCE DYNAMIC TIME
WARPING

Given the above-mentioned definitions of sub-trajectories and foundation-model-driven similarity
metrics, we instantiate an algorithm to find the K most relevant sub-trajectories Tmatch from the
offline dataset Dprior for each sub-trajectory t segmented from Dtarget. Sub-trajectories may have
variable lengths and temporal positioning within a trajectory caused by varying tasks, platforms,
or demonstrators. We employ S-DTW to match the target sub-trajectories Ttarget to appropriate
segment Tmatch in Dprior (Sec. 3.1). S-DTW scales naturally with these challenges and allows for
retrieval from diverse, multi-task datasets. On deployment, subsequence dynamic time warping
accepts a query sub-sequences from the target dataset, i.e., ttarget, and uses dynamic programming to

2Other cost metrics such as (1-cosine similarity) could be used here as well.
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compute matches that are maximally aligned with the query Tmatch = {SDTW(t,Dprior),∀t ∈ Ttarget}
along with matching costs, D. To construct Dretrieval, we select the K matches with the lowest
cost uniformly across the sub-trajectories in Ttarget, i.e., the same number of matches for each query
until K matches are retrieved. We note that the resulting set of matches can contain duplicates
if the demonstrations share similar chunks, but argue that if a chunk occurs multiple times in the
demonstrations, it is important to the task and should be “up-weighted” in the training set – in
this case through duplicated retrieval. For each match, we also retrieve its corresponding language
instruction. The training dataset then contains a union of the target dataset Dtarget and the retrieved
dataset Dretrieval, Dtarget ∪ Dretrieval. This significantly larger, retrieval-augmented dataset can then be
used to learn policies via imitation learning, leading to robust, generalizable policies as we describe
below.

4.5 PUTTING IT ALL TOGETHER: STRAP

To start the retrieval process, we encode image observations in Dtarget and Dprior using a vision
foundation model, e.g., DINOv2 (Oquab et al.) or CLIP (Radford et al., 2021). To best leverage
the multi-task trajectories in Dprior, we split the demonstrations in Dtarget into atomic chunks based
on a low-level motion heuristic. Then we generate matches between chunked Dtarget and Dprior and
construct Dretrieval by selecting the top K matches uniformly across all chunks. Combining Dretrieval
with Dtarget forms our dataset for learning a policy. In a standard policy learning setting, noisy
retrieval data can lead to negative transfer, e.g., when observations similar to the target data are
labeled with actions that achieve a different task. Without conditioning, such contaminated samples
hurt the policy’s downstream performance. We propose to use a language-conditioned policy to
deal with this inconsistency. With conditioning, the policy can distinguish between samples from
different tasks, separating misleading from expert actions while benefiting from positive transfer
from the additional training data and context of the language conditioning.

We use behavior cloning (BC) to learn a visuomotor policy π similar to Haldar et al. (2024); Nasiri-
any et al. (2024). We choose a transformer-based (Vaswani, 2017) architecture feeding in a his-
tory of the last h observations st−h:t and predicting a chunk of h future actions using a Gaus-
sian mixture model action head. We sample batches from the union of Dtarget and Dretrieval, as in
B ∼ Dtarget ∪ Dretrieval. As proposed in Haldar et al. (2024) we compute the multi-step action loss
and add an L2 regularization term over the model weights θ, resulting in the following loss function:

L(B; θ) = 1

|B|
∑

(si−h:i,ai:i+h,l)∈B
− log(πθ(ai:i+h|si−h:i, l)) + λ∥θ∥22 (3)

with policy πθ and hyperparameter λ controlling the regularization.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

Task Definition: We demonstrate the efficacy of STRAP in simulation on the LIBERO bench-
mark (Liu et al., 2024), and on a Pen-in-Cup manipulation task with a real world robot arm. Eq. 12
shows the target tasks and samples from the retrieval datasets.

• LIBERO: We evaluate STRAP on 10 long-horizon tasks of the LIBERO benchmark (Liu et al.,
2024) which includes diverse objects, layouts, and backgrounds. The evaluation environments
randomize the target object poses, providing an ideal test bed for robustness. We use the agent
view (exocentric) observations for the retrieval and train policies on both agent view and in-hand
observations. To showcase the benefits of sub-trajectory retrieval, we choose the 10 long-horizon
tasks (LIBERO-10) as Dtarget and retrieve data from the other 90 short-horizon tasks (LIBERO-
90), Dprior. The following section features 5 tasks covering a variety of objectives and skills.
While these tasks benefit the most from retrieval, we report results on the remaining ones in the
appendix (Tab. 3).The tasks descriptions are as follows: Stove-Moka combines knob-turning and
Pick&Place, Bowl-Cabinet combines Pick&Place with cabinet closing, Soup-Cheese and Mug-
Mug both contain two consecutive Pick&Place tasks, and Book-Caddy involves Pick&Place and
insertion. Each task comes with 50 demonstrations from which we select 5 random demonstra-
tions in a few-shot imitation learning setting and retrieve data from all LIBERO-90 tasks, which
amounts to 4500 total offline demonstrations.
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Stove-Pot Bowl-Drawer Soup-Cheese Mug-Mug Book-Caddy

LIBERO-90 (Dprior)

Franka-Pen-in-Cup

DROID-10 (Dprior)

Figure 12: Simulation and real-world tasks: Dtarget tasks from LIBERO-10 and real-world Franka-
Pen-in-Cup (top) and retrieval dataset Dprior (bottom).
Table 1: Baselines: Performance of baselines, ablations and variations of STRAP on the LIBERO 10 tasks
(Eq. 12). DINOv2 and CLIP features perform similarly, making STRAP flexible in the encoder choice. Bold
indicates best and underline runner-up results.

Task Stove-Pot Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy

BC 77.33%± 4.35 71.33%± 5.68 27.33%± 2.18 38.00%± 5.66 75.33%± 1.44
MT 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 88.00%± 1.89

BR (Du et al., 2023) 80.0%± 1.63 72.0%± 7.72 26.0%± 5.25 40.0%± 8.64 16.0%± 1.89
FR (Lin et al., 2024) 76.0%± 6.60 54.67%± 11.98 24.67%± 8.55 29.33%± 1.44 52.0%± 5.89

D-S 70.67%± 7.85 65.33%± 1.96 18.0%± 3.40 16.0%± 0.94 57.33%± 2.88
D-T 78.67%± 2.72 75.33%± 2.72 37.33%± 6.62 63.33%± 3.57 79.00%± 4.95

STRAP (CLIP) 86.00%± 4.10 90.67%± 2.18 42.00%± 0.94 54.67%± 3.31 83.33%± 3.03
STRAP (DINOv2) 85.33%± 2.18 91.33%± 2.18 42.67%± 7.20 57.33%± 7.68 85.33%± 2.81

• Franka-Pen-in-Cup: To demonstrate the efficacy of STRAP in a real-world setting, we solve a
Pen-In-Cup task using the Franka Emika Panda robot. Dtarget contains 3 demonstrations of picking
a pen and putting it in a cup next to it Eq. 12. Dprior consists of 100 demonstrations across 10 tasks
in the same tabletop environment collected on the DROID (Khazatsky et al., 2024) hardware setup.
For task details please refer to Appendix A.2. For retrieval, we average the embeddings per time-
step across the left, right, and in-hand camera observations while training the policies on all three
image observations.

Baselines and Ablation: We compare STRAP to the following baselines and ablations and refer
the reader to Appendix A.1 for implementation details and Appendix A.3 for extensive ablations.

• Behavior Cloning (BC) behavior cloning using a transformer-based policy trained on Dtarget;
• Multi-task Policy (MT) transformer-based policy trained on Dprior;
• BR (BehaviorRetrieval) (Du et al., 2023) prior work that trains a VAE on state-action pairs for

retrieval and uses cosine similarity to retrieve single state-action pairs;
• FR (FlowRetrieval) (Lin et al., 2024) same setup as BR but VAE is trained on pre-computed

optical flow from GMFlow (Xu et al., 2022);
• D-S (DINO state) same as BR and FR but uses off-the-shelf DINOv2 (Oquab et al.) features

instead of training a VAE;
• D-T (DINO trajectory) retrieves full trajectories (rather than sub-trajectories) with S-DTW and

DINOv2 features;

5.2 EXPERIMENTAL EVALUATION

Our evaluation aims to address the following questions: (1) Does sub-trajectory retrieval improve
performance in few-shot imitation learning? (2) How effective are the representations from vision-
foundation models for retrieval? (3) What types of matches are identified by S-DTW?

Does sub-trajectory retrieval improve performance in few-shot imitation learning? STRAP out-
performs the retrieval baselines BR and FR on average by +12.20% and +12.47% across all 10 tasks
(Tab. 1). These results demonstrate the policy’s robustness to varying object poses. BC represents a
strong baseline on the LIBERO task as the benchmark’s difficulty comes from pose variations during
evaluation. By memorizing the demonstrations, BC achieves high success rates, outperforming BR
and FR by +4.53% and +4.80% across all 10 tasks. The multi-task baseline trained on LIBERO-90
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Figure 13: Tasks distribution in Dretrieval for different retrieval methods with target task “put the
black bowl in the bottom drawer of the cabinet and close it”.

struggles to generalize to unseen language instructions, failing on 9/10 tasks, only succeeding on the
one with an almost exact match in LIBERO-90 (c.f. Tab. 1). To prove that the robustness benefits are
not unique to the LIBERO benchmark we perform a real-world evaluation in Tab. sec. 5.2. While
BC and STRAP solve the Franka-Pen-in-Cup demonstrated in Dtarget (base), BC lacks robustness to
out-of-distribution (OOD) scenarios. The policy replays the trajectories observed in Dtarget. STRAP
retrieves relevant sub-trajectories from Dprior, e.g., the robot putting the screwdriver in the cup or
picking up pens in various poses. Augmented policy learning then distills this knowledge into a
policy, resulting in generalization to an OOD scenario.

Pen-in-Cup base OOD
Pick Place Pick Place

BC 100% 100% 0% 0%
STRAP 100% 90% 100% 100%

Table 2: Real-world results: Franka-
Pen-in-Cup task

To further investigate the efficacy of sub-
trajectories, we compare sub-trajectory re-
trieval with S-DTW (STRAP) to retrieving full
trajectories with S-DTW (D-T) in Tab. 1. We
find sub-trajectory retrieval to improve perfor-
mance by +4.17% across all 10 tasks. We hy-
pothesize that full trajectories can contain seg-
ments irrelevant to the task, effectively hurting
performance and reducing the accuracy of the
cumulative cost.

How effective are the representations from
vision-foundation models for retrieval? Next, we ablate the choice of foundation model repre-
sentation in STRAP. We compare CLIP, a model trained through supervised learning on image-text
pairs, with DINOv2, a self-supervised model trained on unlabeled images. We don’t find any repre-
sentation to significantly outperform the other with DINOv2 separated from CLIP by only +0.73%
across all 10 tasks. To show the efficacy of vision-foundation models for retrieval, we replace the in-
domain feature extractors from prior work (BR, FR) trained on Dprior with an off-the-shelf DINOv2
encoder model (D-S). Comparing them in their natural configuration, i.e., state-based retrieval us-
ing cosine similarity, allows for a side-by-side comparison of the representations. Tab. 1 shows the
choice of representation to depend on the task with no method outperforming the others on all tasks.
Since D-S has no notion of dynamics and task semantics due to single-state retrieval, BR and FR
outperform it by +5.00% and +4.73%, respectively. We want to highlight that vision foundation
models don’t have to be trained on Dprior and, therefore, scale much better with increasing amounts
of trajectory data and on unseen tasks.

What types of matches are identified by S-DTW? To understand what data STRAP retrieves, we
visualize the distribution over tasks as a function of Dretrieval proportion in Figure 13. The figure
visualizes the top five tasks retrieved and accumulates the rest into the “others” category. It becomes
clear that STRAP retrieves semantically relevant data – each task shares at least one sub-task with
the target task. For example, ”put the black bowl in the bottom drawer of the cabinet”, ”close the
bottom drawer of the cabinet ...” (Eq. 3). Furthermore, STRAP’s retrieval is sparse, only selecting
data from 5/90 semantically relevant tasks and ignoring irrelevant ones. We observe that DINOv2
features are surprisingly agnostic to different environment textures, retrieving data from the same
task but in a different environment (c.f. Eq. 13, ”put the black bowl in the bottom drawer of the
cabinet and close it”). Furthermore, DINOv2 is robust to object poses retrieving sub-trajectories
that ”close the drawer” with the bowl either on the table or in the drawer (c.f. Eq. 25, ”close the
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bottom drawer of the cabinet and open the top drawer”). Trained on optical flow, FR has no notion
of visual appearance, failing to retrieve most of the semantically relevant data.

6 CONCLUSION

We introduce STRAP as an innovative approach for leveraging visual foundation models in few-shot
robotics manipulation, eliminating the need to train on the entire retrieval dataset and allowing it
to scale with minimal compute overhead. By focusing on sub-trajectory retrieval using S-DTW,
STRAP improves data utilization and captures dynamics more effectively. Overall, it outperforms
state-of-the-art methods BehaviorRetrieval and FlowRetrieval by 12.20% and 12.47%, respectively,
across all 10 LIBERO tasks.
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7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we report runs over multiple seeds (1234, 42, 4325), seeding the retrieval
procedure Tab. 6 as well as the training Tab. 1 and Tab. 3. This comprehensive approach allowed
us to verify the consistency of our results across various runs ensuring reproducibility. We conduct
all baseline and ablation experiments on the LIBERO-10 simulated benchmark and report hyperpa-
rameters in Appendix A.1 and Sec. 5.1. We will include a code release with our final paper, pro-
viding detailed instructions for reproducing our experiments exactly. This release will encompass
all necessary components, including data preprocessing scripts, vision foundation model inference,
hyperparameters, and evaluation scripts.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learn-
ing robust visual features without supervision. Transactions on Machine Learning Research.

Georgios Papagiannis, Norman Di Palo, Pietro Vitiello, and Edward Johns. R+ x: Retrieval and
execution from everyday human videos. In RSS 2024 Workshop: Data Generation for Robotics.

Jyothish Pari, Nur Muhammad Mahi Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto.
The surprising effectiveness of representation learning for visual imitation. In 18th Robotics:
Science and Systems, RSS 2022. MIT Press Journals, 2022.

14

https://doi.org/10.1007/978-3-030-69808-9
https://doi.org/10.1007/978-3-030-69808-9


Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Scott E. Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,
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A APPENDIX

A.1 SIM EVALUATION

Table 3: Baselines (sim): Performance of different methods on LIBERO-10 tasks in simulation

Method Mug-Microwave Moka-Moka Soup-Sauce Cream-Cheese-Butter Mug-Pudding

BC 28.00%± 0.94 0.00%± 0.00 17.33%± 4.46 26.67%± 4.25 18.00%± 2.49
MT 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00

BR (Du et al., 2023) 28.67%± 3.93 0.0%± 0.0 13.33%± 3.81 32.0%± 4.32 26.0%± 1.89
FR (Lin et al., 2024) 27.33%± 1.44 0.0%± 0.0 11.33%± 3.03 41.33%± 5.52 14.67%± 1.09

D-S 30.0%± 3.4 0.0%± 0.0 4.67%± 0.54 16.0%± 5.66 6.0%± 0.94
D-T 34.67%± 1.96 0.0%± 0.0 4.67%± 1.09 27.33%± 4.46 14.0%± 3.4

STRAP (CLIP) 30.00%± 2.49 0.00%± 0.00 8.67%± 6.28 29.33%± 10.51 24.00%± 4.32
STRAP (DINO) 29.33%± 2.72 0.00%± 0.00 16.67%± 1.97 29.33%± 11.34 18.67%± 1.44

Remaining results on LIBERO-10 Tab. 3 shows the results for the remaining LIBERO-10 task not
reported in the main sections. Both FR and BR outperform STRAP on the Cream-Cheese-Butter
task. We hypothesize that our chunking heuristic generates sub-optimal sub-trajectories (too long)
causing them to contain multiple different semantic tasks, leading to worse matches in our retrieval
datasets and eventually in decreasing downstream performance.

Hyperparameters for sim results: All results are reported over 3 training and evaluation seeds
(1234, 42, 4325). We fixed both the number of segments retrieved to 100, the camera viewpoint to
the agent view image for retrieval, and the number of expert demonstrations to 5. Our transformer
policy was trained over all input images for 300 epochs with batch size 32 and an epoch every 200
gradient steps.

Baseline implementation details: Following Lin et al. (2024), we retrieve single-state action
pairs for the state-based retrieval baselines (BR, FR, D-S) and pad them by also retrieving the states
from t−h to t+h− 1 to make the samples compatible with our transformer-based policy. We refer
the reader to Appendix A.3 for extensive ablation.

A.2 REAL EXPERIMENTS

Figure 14:
chess

Figure 15:
cube stacking

Figure 16:
hotdog

Figure 17:
knock over box

Figure 18:
marker in mug

Figure 19:
medicine pnp

Figure 20:
dispense soap

Figure 21:
pull cable right

Figure 22:
pen next to pens

Figure 23:
screwdriver

Figure 24: Environment setup for the real-world tasks
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Environment Name Language Instruction

chess Move the king to the top right of the chess board
cube stacking Stack the blue cube on top of the tower

hotdog Put the hotdog in the bun
knock over box Knock over the box
marker in mug Put the marker in the mug
medicine pnp Pick up the medicine box on the right and put it next to the other medicine boxes
dispense soap Press the soap dispenser

pull cable right Pull the cable to the right
pen next to pens Put the pen next to the markers

screwdriver Pick up the screwdriver and put it in the cup

Table 4: Task/language instructions for the real-world dataset Dprior

A.3 ABLATIONS

Table 5: Ablations - Retrieval Method: We explore different approaches for trajectory-based retrieval. Be-
sides the heuristic reported in the main paper, we experiment with a sliding window approach that segments
a trajectory into sub-trajectories of equal length (here: 30). We use S-DTW for both sliding window sub-
trajectories and full trajectories.

Method Stove-Moka Bowl-Cabenet Mug-Microwave Moka-Moka Soup-Cream-Cheese

Sub-traj (sliding window) 76.0%± 4.71 75.33%± 2.72 26.0%± 1.89 0.0%± 0.0 37.33%± 6.62
Full traj 78.67%± 2.72 68.67%± 1.44 34.67%± 1.96 0.0%± 0.0 28.67%± 3.81

Method Soup-Sauce Cream-Cheese-Butter Mug-Mug Mug-Pudding Book-Caddy

Sub-traj (sliding window) 40.00%± 0.94 27.33%± 2.18 63.33%± 3.57 30.00%± 3.40 79.0%± 4.95
Full traj 4.67%± 1.09 27.33%± 4.46 43.33%± 1.09 14.0%± 3.4 68.0%± 5.66

Table 6: Ablations - Retrieval Seeds: We run STRAP on different retrieval seeds on a subset of LIBERO-10
tasks. We report results over all possible combinations of 3 training and 3 retrieval seeds

Method Stove-Moka Mug-Cabinet Book-Caddy

BC Baseline 93.11%± 1.57 83.11%± 2.69 93.11%± 1.57
STRAP 98.0%± 1.04 88.67%± 2.11 98.0%± 1.04

Table 7: Ablations - amount data retrieved: We explore the effect of increasing the size of Dretrieval. We
evaluate performance on LIBERO-10 tasks in simulation on 2 different retrieval and 3 training seeds. We
randomly sample 10 demos from Dtarget and retrieve 1500 segments. This demonstrates STRAP’s robustness
over multiple seeds, as well as scalability to more data even leading to performance gains

Task Stove-Pot Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy

BC 86.33%± 2.18 76.0%± 3.97 41.67%± 3.72 59.0%± 2.25 92.67%± 1.81
STRAP (DINO) 88.67%± 3.42 95.67%± 1.19 45.67%± 7.41 67.67%± 1.59 93.71%± 1.87

Method Mug-Microwave Pots-On-Stove Soup-Sauce Cream cheese-Butter Mug-Pudding

BC 47.67%± 4.75 0.00%± 0.00 23.0%± 3.42 57.33%± 0.77 32.0%± 1.33
STRAP (DINO) 31.33%± 3.73 0.00%± 0.00 45.0%± 5.09 58.67%± 9.58 38.33%± 3.38
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Table 8: Ablations - Diffusion Policies: Performance on LIBERO-10 tasks using diffusion policies without
language conditioning for BR and FR. These experiments replicate the training setup for BR and FR. Both
methods fall short of the baselines reported in the rest of the paper.

Task Stove-Pot Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy

Diffusion Behavior Retrieval 36.67%± 1.44 68.0%± 2.49 34.0%± 2.49 55.33%± 1.44 42.0%± 1.63
Diffusion Flow Retrieval 68.67%± 2.37 56.0%± 4.32 18.0%± 3.4 56.0%± 3.4 35.33%± 6.28

Method Mug-Microwave Pots-On-Stove Soup-Sauce Cream cheese-Butter Mug-Pudding

Diffusion Behavior Retrieval 30.67%± 0.54 0.00%± 0.00 10.67%± 1.96 24.0%± 0.94 9.33%± 1.44
Diffusion Flow Retrieval 32.67%± 3.31 68.0%± 2.49 6.0%± 0.0 35.33%± 0.54 8.0%± 1.89
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Figure 25: Match distribution Dprior for STRAP with target task: ”put the black bowl in the bottom
drawer of the cabinet and close it”. S-DTW finds the best matches regardless of start and end points
or trajectory length. This results in a distribution over start and end points as well as a variety of
trajectory lengths retrieved.
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