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Takeaways
► VOT is a versatile multi-modal Odometry framework

► Dropping modalities during training helps dealing with 
missing modalities during test time

► Action prior and multi-modal pre-training drastically reduce 
data requirements
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Figure 3. Top-down map of the agent navigating the Cantwell scene [58] from start ( ) to goal ( ). The plot shows the shortest path ( ),
the path taken by the agent ( ), and the ”imaginary” path the agent took, i.e., its VO estimate ( ). We evaluate the model without RGB or
Depth (Drop) to determine performance when modalities are missing. As expected, the VOT relies heavily on both modalities, causing
the estimation to drift when either RGB or Depth is unavailable. The localization error accumulates over the course of the trajectory and
causes the true and imaginary path to diverge, resulting in failure to complete the episodes. Training a VOT to be modality-invariant (VOT
w/ inv.) removes those reliances and leads to success even when modalities are missing.

Method Drop S " SPL" SSPL" dg #
VOT RGB – 59.3 45.4 66.7 66.2
VOT Depth – 93.3 71.7 72.0 38.0

[12] – 64.5 48.9 65.4 85.3
VOT – 88.2 67.9 71.3 42.1
VOT w/ inv. – 92.6 70.6 71.3 40.7
[12] RGB 0.0 0.0 5.4 398.7
VOT RGB 75.9 58.5 69.9 59.5
VOT w/ inv. RGB 91.0 69.4 71.2 37.0
[12] Depth 0.0 0.0 5.4 398.7
VOT Depth 26.1 20.0 58.7 148.1
VOT w/ inv. Depth 60.9 47.2 67.7 72.1

Table 1. Results for dropping modalities during test-time. Training
a VOT to be modality-invariant (w/ inv.) leads to no performance
drop in comparison to a VOT trained on a single modality (VOT
RGB, VOT Depth). This shows that a single VOT w/ inv. can
replace multiple modality-dependent counterparts. Previous ap-
proaches [12,35,64] become inapplicable, converging to a Blind
behavior. Metrics reported as e�2. Bold indicates best results.

Pre-training: Pre-training is a well-known practice to deal
with the large data requirements of Vision Transformers
(ViTs) [14, 60], especially in a VO setting where data is
scarce [14,25,45]. We use the pre-trained MultiMAE (RGB
+ Depth + SemSeg) made publicly available by Bach-
mann et al. [3]. Since SemSeg is unavailable in our setting,
we discard the corresponding projection layers.
Training Details: We follow prior work [12, 35, 64] and
train our navigation policy and VO model separately before
jointly evaluating them on the validation set. In contrast
to [12, 64], we do not fine-tune the navigation policy on

the trained VO models as it has shown minimal navigation
performance gains in [64] and was abandoned in [35].

We train all models, including baselines, for 100 epochs
with 10 warm-up epochs that increase the learning rate lin-
early from 0.0 to 2e�4, and evaluate the checkpoints with
the lowest validation error. We further find gradient norm
clipping [62] (max gradient norm of 1.0) to stabilize the
training of VOT but to hurt the performance of the Con-
vNet baselines. The training was done with a batch size
of 128 on an NVIDIA V100-SXM4-40GB GPU with au-
tomatic mixed-precision enabled in PyTorch [36] to reduce
memory footprint and speed up training. Our backbone is
a ViT-B [14] with a patch size of 16 ⇥ 16 and 12 encoder
blocks with 12 Multi-head Attention (MHA) heads each,
and token dimensions 768. To encode the input into tokens,
we use a 2D sine-cosine positional embedding and separate
linear projection layers for each modality. Note that if addi-
tional modalities are available, our model can be extended
by adding additional linear input projections or fine-tuning
existing ones [4]. Finally, we pass all available tokens to the
model and resize each observation to 160⇥80⇥c (width ⇥
height ⇥ channels c) and concatenate modalities along their
height to 160 ⇥ 160 ⇥ c to reduce computation. We keep
a running mean and variance to normalize RGB and Depth
to zero mean and unit variance.

Evaluation Metrics: Anderson et al. [2] propose the Suc-
cess weighted by (normalized inverse) Path Length (SPL)
to evaluate agents in a PointGoal or ObjectGoal navigation
setting. A crucial component of this metric is the success
of an episode (success S = 1, failure S = 0). With l

the shortest path distance from the starting position and p

the length of the path taken by the agent, the SPL over N
episodes is defined as SPL = 1

N

PN�1
i=0 S

(i) l(i)

max(p(i),l(i))
.

We propose a modality-agnostic framework based on the Vision
Transformer [3] architecture that deals with optional modalities without 
sacrificing performance.

Attention maps
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Figure 3. Top-down map of the agent navigating the Cantwell scene [58] from start ( ) to goal ( ). The plot shows the shortest path ( ),
the path taken by the agent ( ), and the ”imaginary” path the agent took, i.e., its VO estimate ( ). We evaluate the model without RGB or
Depth (Drop) to determine performance when modalities are missing. As expected, the VOT relies heavily on both modalities, causing
the estimation to drift when either RGB or Depth is unavailable. The localization error accumulates over the course of the trajectory and
causes the true and imaginary path to diverge, resulting in failure to complete the episodes. Training a VOT to be modality-invariant (VOT
w/ inv.) removes those reliances and leads to success even when modalities are missing.

Method Drop S " SPL" SSPL" dg #
VOT RGB – 59.3 45.4 66.7 66.2
VOT Depth – 93.3 71.7 72.0 38.0

[12] – 64.5 48.9 65.4 85.3
VOT – 88.2 67.9 71.3 42.1
VOT w/ inv. – 92.6 70.6 71.3 40.7
[12] RGB 0.0 0.0 5.4 398.7
VOT RGB 75.9 58.5 69.9 59.5
VOT w/ inv. RGB 91.0 69.4 71.2 37.0
[12] Depth 0.0 0.0 5.4 398.7
VOT Depth 26.1 20.0 58.7 148.1
VOT w/ inv. Depth 60.9 47.2 67.7 72.1

Table 1. Results for dropping modalities during test-time. Training
a VOT to be modality-invariant (w/ inv.) leads to no performance
drop in comparison to a VOT trained on a single modality (VOT
RGB, VOT Depth). This shows that a single VOT w/ inv. can
replace multiple modality-dependent counterparts. Previous ap-
proaches [12,35,64] become inapplicable, converging to a Blind
behavior. Metrics reported as e�2. Bold indicates best results.

Pre-training: Pre-training is a well-known practice to deal
with the large data requirements of Vision Transformers
(ViTs) [14, 60], especially in a VO setting where data is
scarce [14,25,45]. We use the pre-trained MultiMAE (RGB
+ Depth + SemSeg) made publicly available by Bach-
mann et al. [3]. Since SemSeg is unavailable in our setting,
we discard the corresponding projection layers.
Training Details: We follow prior work [12, 35, 64] and
train our navigation policy and VO model separately before
jointly evaluating them on the validation set. In contrast
to [12, 64], we do not fine-tune the navigation policy on

the trained VO models as it has shown minimal navigation
performance gains in [64] and was abandoned in [35].

We train all models, including baselines, for 100 epochs
with 10 warm-up epochs that increase the learning rate lin-
early from 0.0 to 2e�4, and evaluate the checkpoints with
the lowest validation error. We further find gradient norm
clipping [62] (max gradient norm of 1.0) to stabilize the
training of VOT but to hurt the performance of the Con-
vNet baselines. The training was done with a batch size
of 128 on an NVIDIA V100-SXM4-40GB GPU with au-
tomatic mixed-precision enabled in PyTorch [36] to reduce
memory footprint and speed up training. Our backbone is
a ViT-B [14] with a patch size of 16 ⇥ 16 and 12 encoder
blocks with 12 Multi-head Attention (MHA) heads each,
and token dimensions 768. To encode the input into tokens,
we use a 2D sine-cosine positional embedding and separate
linear projection layers for each modality. Note that if addi-
tional modalities are available, our model can be extended
by adding additional linear input projections or fine-tuning
existing ones [4]. Finally, we pass all available tokens to the
model and resize each observation to 160⇥80⇥c (width ⇥
height ⇥ channels c) and concatenate modalities along their
height to 160 ⇥ 160 ⇥ c to reduce computation. We keep
a running mean and variance to normalize RGB and Depth
to zero mean and unit variance.

Evaluation Metrics: Anderson et al. [2] propose the Suc-
cess weighted by (normalized inverse) Path Length (SPL)
to evaluate agents in a PointGoal or ObjectGoal navigation
setting. A crucial component of this metric is the success
of an episode (success S = 1, failure S = 0). With l

the shortest path distance from the starting position and p

the length of the path taken by the agent, the SPL over N
episodes is defined as SPL = 1

N

PN�1
i=0 S

(i) l(i)

max(p(i),l(i))
.

vo-transformer.github.io

Top-down map of the agent navigating from start to goal. The plot shows the shortest path, the 
path taken by the agent, and the ”imaginary” path the agent took, i.e., its VO estimate.

w/o explicit invariance training (VOT-B): agent heavily relies on both modalities (RGB < Depth) and 
fails catastrophically if either is unavailable (Drop: RGB, or Drop: Depth)

w/ explicit invariance training (VOT-B w/ inv.): agent succeeds even when modalities are missing!

► Action token 
serves as 
powerful prior

► VOT attends to 
relevant image 
regions

► Action token 
resolves 
ambiguities 
caused by noise 
and collision

► ConvNet-based architecture [1,2] can’t deal with optional modalities

► Explicit invariance training performs on par with single modality 
model when modalities are dropped

► Depth is more informative than RGB for the VO task

Habitat challenge
Highest SSPL training on only 5% of the data on Habitat Challenge 2021.

► Transformer architecture à agnostic to the number of input tokens and 
number of modalities

► Condition Transformer with action token & MultiMAE [4] pre-training à
Reduce data requirements to 5% of previous architectures!

► Dropping modalities during training à Explicitly prepare the architecture 
for test-time modality invariance
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► We can switch between modalities 
to localize ourselves. Odometry 
should too!

► Sensors fail, change or are 
intentionally looped out causing 
Visual Odometry methods to fail!


