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Motivation

» \We can switch between modalities » Sensors fail, change or are
to localize ourselves. Odometry intentionally looped out causing

should too! Visual Odometry methods to fail!
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We propose a modality-agnostic framework based on the Vision
Transformer [3] architecture that deals with optional modalities without
sacrificing performance.
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» Transformer architecture - agnostic to the number of input tokens and
number of modalities

» Condition Transformer with action token & MultiMAE [4] pre-training -
Reduce data requirements to 5% of previous architectures!

» Dropping modalities during training = Explicitly prepare the architecture
for test-time modality invariance

Navigation performance under missing modalities
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Top-down map of the agent navigating from start to goal. The plot shows the shortest path, the

path taken by the agent, and the ”"imaginary” path the agent took, i.e.,

w/o explicit invariance training (VOT-B): agent heavily relies on both modalities (RGB < Depth) and

fails catastrophically if either is unavailable (Drop: RGB, or Drop: Depth)

w/ explicit invariance training (VOT-B w/ inv.): agent succeeds even when modalities are missing!
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its VO estimate.

Quantitative results under missing modalities

Method Drop ST SPLT SSPLT d, |
VOT RGB - 503 454 66.7  66.2
VOT Depth — 933  71.7 72.0  38.0

[1] — 64.5 48.9 65.4  85.3
VOT - 88.2 679 71.3  42.1
VOT w/ inv. - 92.6 70.6 71.3  40.7

[1] RGB 0.0 0.0 54 398.7
VOT RGB 759 585 69.9 59.5
VOT w/ inv. RGB 910 694 71.2 37.0

[1] Depth 0.0 0.0 54 398.7
VOT Depth 26.1  20.0 58.7 148.1
VOT w/ inv. Depth 60.9 47.2 67.7 721

» ConvNet-based architecture [1,2] can’t deal with optional modalities

» Explicit invariance training performs on par with single modality
model when modalities are dropped

» Depth is more informative than RGB for the VO task

Habitat challenge

Attention maps

» Action token
serves as
powerful prior

» VOT attends to
relevant image
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Highest SSPL training on only 5% of the data on Habitat Challenge 2021.

Rank Participant team S SPL SSPL
1 MultiModalVO (VOT) (ours) 93 74 77
2 VO for Realistic PointGoal 94 74 76
3 inspir.ai robotics 91 70 71
4 V02021 78 59 69

5 Differentiable SLAM-net 65 47 60

Takeaways

» VOT is a versatile multi-modal Odometry framework

» Dropping modalities during training helps dealing with
missing modalities during test time

» Action prior and multi-modal pre-training drastically reduce
data requirements
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