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We can switch between modalities to localize. 
Odometry models should too!
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Problem
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§ Multi-modal Point-goal Navigation with ‘optional’ modalities



§ Transformers are 
agnostic to the number of 
input tokens/modalities

§ Action token &multi-
modal pre-training 
(MultiMAE [1])

§ Explicit modality-
invariance training

Visual Odometry 
Transformers (VOT)
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[1] MultiMAE: Multi-modal Multi-task Masked Autoencoders. Bachmann et al. 2022.



Dropping modalities 
during deployment
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Figure 3. Top-down map of the agent navigating the Cantwell scene [58] from start ( ) to goal ( ). The plot shows the shortest path ( ),
the path taken by the agent ( ), and the ”imaginary” path the agent took, i.e., its VO estimate ( ). We evaluate the model without RGB or
Depth (Drop) to determine performance when modalities are missing. As expected, the VOT relies heavily on both modalities, causing
the estimation to drift when either RGB or Depth is unavailable. The localization error accumulates over the course of the trajectory and
causes the true and imaginary path to diverge, resulting in failure to complete the episodes. Training a VOT to be modality-invariant (VOT
w/ inv.) removes those reliances and leads to success even when modalities are missing.

Method Drop S " SPL" SSPL" dg #
VOT RGB – 59.3 45.4 66.7 66.2
VOT Depth – 93.3 71.7 72.0 38.0

[12] – 64.5 48.9 65.4 85.3
VOT – 88.2 67.9 71.3 42.1
VOT w/ inv. – 92.6 70.6 71.3 40.7
[12] RGB 0.0 0.0 5.4 398.7
VOT RGB 75.9 58.5 69.9 59.5
VOT w/ inv. RGB 91.0 69.4 71.2 37.0
[12] Depth 0.0 0.0 5.4 398.7
VOT Depth 26.1 20.0 58.7 148.1
VOT w/ inv. Depth 60.9 47.2 67.7 72.1

Table 1. Results for dropping modalities during test-time. Training
a VOT to be modality-invariant (w/ inv.) leads to no performance
drop in comparison to a VOT trained on a single modality (VOT
RGB, VOT Depth). This shows that a single VOT w/ inv. can
replace multiple modality-dependent counterparts. Previous ap-
proaches [12,35,64] become inapplicable, converging to a Blind
behavior. Metrics reported as e�2. Bold indicates best results.

Pre-training: Pre-training is a well-known practice to deal
with the large data requirements of Vision Transformers
(ViTs) [14, 60], especially in a VO setting where data is
scarce [14,25,45]. We use the pre-trained MultiMAE (RGB
+ Depth + SemSeg) made publicly available by Bach-
mann et al. [3]. Since SemSeg is unavailable in our setting,
we discard the corresponding projection layers.
Training Details: We follow prior work [12, 35, 64] and
train our navigation policy and VO model separately before
jointly evaluating them on the validation set. In contrast
to [12, 64], we do not fine-tune the navigation policy on

the trained VO models as it has shown minimal navigation
performance gains in [64] and was abandoned in [35].

We train all models, including baselines, for 100 epochs
with 10 warm-up epochs that increase the learning rate lin-
early from 0.0 to 2e�4, and evaluate the checkpoints with
the lowest validation error. We further find gradient norm
clipping [62] (max gradient norm of 1.0) to stabilize the
training of VOT but to hurt the performance of the Con-
vNet baselines. The training was done with a batch size
of 128 on an NVIDIA V100-SXM4-40GB GPU with au-
tomatic mixed-precision enabled in PyTorch [36] to reduce
memory footprint and speed up training. Our backbone is
a ViT-B [14] with a patch size of 16 ⇥ 16 and 12 encoder
blocks with 12 Multi-head Attention (MHA) heads each,
and token dimensions 768. To encode the input into tokens,
we use a 2D sine-cosine positional embedding and separate
linear projection layers for each modality. Note that if addi-
tional modalities are available, our model can be extended
by adding additional linear input projections or fine-tuning
existing ones [4]. Finally, we pass all available tokens to the
model and resize each observation to 160⇥80⇥c (width ⇥
height ⇥ channels c) and concatenate modalities along their
height to 160 ⇥ 160 ⇥ c to reduce computation. We keep
a running mean and variance to normalize RGB and Depth
to zero mean and unit variance.

Evaluation Metrics: Anderson et al. [2] propose the Suc-
cess weighted by (normalized inverse) Path Length (SPL)
to evaluate agents in a PointGoal or ObjectGoal navigation
setting. A crucial component of this metric is the success
of an episode (success S = 1, failure S = 0). With l

the shortest path distance from the starting position and p

the length of the path taken by the agent, the SPL over N
episodes is defined as SPL = 1

N

PN�1
i=0 S

(i) l(i)

max(p(i),l(i))
.



Explicit modality-
invariance training
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Figure 3. Top-down map of the agent navigating the Cantwell scene [58] from start ( ) to goal ( ). The plot shows the shortest path ( ),
the path taken by the agent ( ), and the ”imaginary” path the agent took, i.e., its VO estimate ( ). We evaluate the model without RGB or
Depth (Drop) to determine performance when modalities are missing. As expected, the VOT relies heavily on both modalities, causing
the estimation to drift when either RGB or Depth is unavailable. The localization error accumulates over the course of the trajectory and
causes the true and imaginary path to diverge, resulting in failure to complete the episodes. Training a VOT to be modality-invariant (VOT
w/ inv.) removes those reliances and leads to success even when modalities are missing.

Method Drop S " SPL" SSPL" dg #
VOT RGB – 59.3 45.4 66.7 66.2
VOT Depth – 93.3 71.7 72.0 38.0

[12] – 64.5 48.9 65.4 85.3
VOT – 88.2 67.9 71.3 42.1
VOT w/ inv. – 92.6 70.6 71.3 40.7
[12] RGB 0.0 0.0 5.4 398.7
VOT RGB 75.9 58.5 69.9 59.5
VOT w/ inv. RGB 91.0 69.4 71.2 37.0
[12] Depth 0.0 0.0 5.4 398.7
VOT Depth 26.1 20.0 58.7 148.1
VOT w/ inv. Depth 60.9 47.2 67.7 72.1

Table 1. Results for dropping modalities during test-time. Training
a VOT to be modality-invariant (w/ inv.) leads to no performance
drop in comparison to a VOT trained on a single modality (VOT
RGB, VOT Depth). This shows that a single VOT w/ inv. can
replace multiple modality-dependent counterparts. Previous ap-
proaches [12,35,64] become inapplicable, converging to a Blind
behavior. Metrics reported as e�2. Bold indicates best results.

Pre-training: Pre-training is a well-known practice to deal
with the large data requirements of Vision Transformers
(ViTs) [14, 60], especially in a VO setting where data is
scarce [14,25,45]. We use the pre-trained MultiMAE (RGB
+ Depth + SemSeg) made publicly available by Bach-
mann et al. [3]. Since SemSeg is unavailable in our setting,
we discard the corresponding projection layers.
Training Details: We follow prior work [12, 35, 64] and
train our navigation policy and VO model separately before
jointly evaluating them on the validation set. In contrast
to [12, 64], we do not fine-tune the navigation policy on

the trained VO models as it has shown minimal navigation
performance gains in [64] and was abandoned in [35].

We train all models, including baselines, for 100 epochs
with 10 warm-up epochs that increase the learning rate lin-
early from 0.0 to 2e�4, and evaluate the checkpoints with
the lowest validation error. We further find gradient norm
clipping [62] (max gradient norm of 1.0) to stabilize the
training of VOT but to hurt the performance of the Con-
vNet baselines. The training was done with a batch size
of 128 on an NVIDIA V100-SXM4-40GB GPU with au-
tomatic mixed-precision enabled in PyTorch [36] to reduce
memory footprint and speed up training. Our backbone is
a ViT-B [14] with a patch size of 16 ⇥ 16 and 12 encoder
blocks with 12 Multi-head Attention (MHA) heads each,
and token dimensions 768. To encode the input into tokens,
we use a 2D sine-cosine positional embedding and separate
linear projection layers for each modality. Note that if addi-
tional modalities are available, our model can be extended
by adding additional linear input projections or fine-tuning
existing ones [4]. Finally, we pass all available tokens to the
model and resize each observation to 160⇥80⇥c (width ⇥
height ⇥ channels c) and concatenate modalities along their
height to 160 ⇥ 160 ⇥ c to reduce computation. We keep
a running mean and variance to normalize RGB and Depth
to zero mean and unit variance.

Evaluation Metrics: Anderson et al. [2] propose the Suc-
cess weighted by (normalized inverse) Path Length (SPL)
to evaluate agents in a PointGoal or ObjectGoal navigation
setting. A crucial component of this metric is the success
of an episode (success S = 1, failure S = 0). With l

the shortest path distance from the starting position and p

the length of the path taken by the agent, the SPL over N
episodes is defined as SPL = 1

N

PN�1
i=0 S

(i) l(i)

max(p(i),l(i))
.

Method Observations Pre-train [ACT ] S " SPL" SSPL" dg # Ltrain # Lval #

1 [64] (separate) RGB-D 22.4 13.8 31.5 305.3 0.125 0.186
2 [64] (unified) RGB-D 4 64.5 48.9 65.4 85.3 0.264 0.420

3 Blind – 0.0 0.0 5.4 398.7 48.770 47.258
4 VOT-B RGB 27.1 21.2 57.7 177.0 0.735 1.075
5 VOT-B Depth 43.2 32.0 59.3 122.5 0.441 0.644
6 VOT-B RGB-D 47.3 36.3 61.2 119.7 1.256 1.698

7 Blind – 4 13.3 10.0 46.3 251.8 1.637 1.641
8 VOT-B RGB 4 42.0 32.3 62.7 107.0 0.043 0.571
9 VOT-B Depth 4 76.1 58.8 69.2 60.7 0.017 0.113
10 VOT-B RGB-D 4 72.1 55.6 68.5 64.4 0.019 0.129

11 VOT-B RGB 4 54.5 41.3 65.2 69.9 0.056 0.347
12 VOT-B Depth 4 83.2 63.4 69.1 49.9 0.079 0.205
13 VOT-B RGB-D 4 85.7 65.7 69.7 56.1 0.021 0.060
14 VOT-B RGB 4 4 59.3 45.4 66.7 66.2 0.003 0.280
15 VOT-B Depth 4 4 93.3 71.7 72.0 38.0 0.004 0.044
16 VOT-B RGB-D 4 4 88.2 67.9 71.3 42.1 0.004 0.051

17 VOT-B w/ inv. RGB-D 4 4 92.6 70.6 71.3 40.7 0.008 0.094

oracle GPS+Compass – – 97.8 74.8 73.1 29.9 – –

Table 2. Ablation study of architecture design and input modalities. We further investigate pre-training with MultiMAE [4] in models
11-14. Losses L, Success S, SPL, SSPL, and dg reported as e�2. Bold indicates best results.

Rank Participant team S SPL SSPL dg

1 MultiModalVO (VOT) (ours) 93 74 77 21
2 VO for Realistic PointGoal [35] 94 74 76 21
3 inspir.ai robotics 91 70 71 70
4 VO2021 [64] 78 59 69 53
5 Differentiable SLAM-net [24] 65 47 60 174

Table 3. Habitat Challenge 2021. Results for the Point Nav Test-
Standard Phase (test-std split) retrieved on 05-Nov-2022.

from exploiting this asymmetry and matches the perfor-
mance of VOT-B (RGB) when Depth is dropped during
test-time Tab. 1.

4.3. Quantitative Results
We compare our approach to Zhao et al. [64] in terms

of downstream navigation performance, i.e., the VO model
as GPS+Compass replacement for a learned navigation
agent. We use the same publicly available navigation policy
for both approaches and the published VO models of the
baseline [64]. Using only 25% of the training data, VOT
improves performance by S + 12.3, SPL+9.7, SSPL+2.0
(cf . Table 2 15) and S + 7.2, SPL+5.7, SSPL+1.3 (cf . Ta-
ble 2 16). When training the baseline on our smaller data
set (cf . Table 2 2, unified, ResNet-50), this improvement
increases to S + 29.8, SPL+22.8, SSPL+6.6 (cf . Table 2
15) and S + 23.7, SPL+19.0, SSPL+5.9 (cf . Table 2 16).

To capture the raw VO performance detached from the
indoor navigation task, we inspect the absolute prediction
error in Figure 4. We differentiate between translation ⇠

in x- and y- direction (⇠x, ⇠y), and taken action. VOT is
accurate up to 0.36 cm (fwd), 1.04 cm (right), 1.05 cm
(left) in x- direction and 0.20 cm (fwd), 0.41 cm (right),
0.38 cm (left) in z-direction. Note how the baseline strug-
gles to capture ⇠z , corresponding to the forward-moving di-
rection z when taking the fwd action.

Given the results in Table 2, we advise using VOT
trained on Depth-only when access is assumed, as the
difference to using GPS+Compass is a mere S � 4.5,
SPL�3.1, SSPL�1.1. When ”optional” modalities are
needed, e.g., they are expected to change during test-time,
invariance training should be used. Trained on RGB-D, this
setup also reaches GPS+Compass like performance with
differences of only S � 5.2, SPL�4.2, SSPL�1.8.

4.4. Ablation Study
We identify the impact of different input modalities and

model design choices in our ablation study (cf . Table 2).
Without observations, the Blind VO model cannot update
the goal position. This means the agent can only act without
goal-related feedback, resulting in a 0% success rate.

Extending the model with our proposed [ACT ] token
allows it to surpass the Blind performance. Able to up-

Ø SOTA on Habitat PointNav Challenge [1]  
with only 5% of the training data!

[1] Are We Making Real Progress in Simulated Environments? Measuring the 
Sim2Real Gap in Embodied Visual Navigation. Kadian et al. 2019.



Attention Maps

CVPR 2023 - Modality-invariant Visual Odometry for Embodied Vision

8

Ø VOT attends to relevant regions in the image



§ Versatile multi-modal odometry framework 
that can deal with ‘optional’ modalities

§ Dropping modalities during training leads to 
modality-invariance during test time

§ Action prior and multi-modal pre-training 
drastically reduce data requirements
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